The Classical Language Toolkit: An NLP Framework for Pre-Modern Languages

Kyle P. Johnson, Clément Besnier, and Todd Cook
Digital Classicist Seminars
Zentrum Grundlagenforschung Alte Welt
Berlin-Brandenburg Academy of Sciences and Humanities
December 14, 2021
1. Kyle P. Johnson: CLTK Overview
2. Clément Besnier: Demo via Old Norse Example
3. Todd Cook: BERT & MLOps
1. Pre-Modern NLP

2. System Design

3. CLTK Architecture
• **Problem:**
 - Most NLP for living languages, neglects non-spoken historical languages
 - Scholars of pre-modern languages often have different goals than those of living-language researchers

• **Solution:** An NLP framework for pre-modern languages with a modular processing pipeline that balances the competing demands of algorithmic diversity with pre-configured defaults.
1. Pre-Modern NLP
Pre-modern languages have traits distinguishing them from living languages, including:

- **A finite corpus**: Since native speakers no longer generate new texts, corpora may be too small for some machine learning algorithms, thus requiring rules-based or hybrid approaches.

- **Variation**: Corpora of pre-modern languages are likely to demonstrate greater variation than living languages.

- **Limited resources**: Interest in pre-modern languages is largely scholarly or religious, meaning less funding from government and industry.
Researchers of pre-modern languages have concerns that are likely *philological*, *linguistic*, or *pedagogical*.

- **Philology**: Philology is an approach to pre-modern writing that focuses on the historical origins of texts; it is comparative as well as genealogical in nature.

- **Linguistics**: Historical linguists study diachronic change in a language itself, as opposed to philologists’ focus upon written language.

- **Pedagogy**: Students do not learn by speaking but reading original texts.
Definitions

• **Pre-modern language**: encompasses the ISO 639-3 definitions of:
 - *ancient, extinct, and historic* (SIL)
 - 219 languages between the 33rd century B.C. (Sumerian) up until the start of the A.D. 19th century

• **Framework & pipeline**:
 - Frameworks make the technology easier for non-specialists to use (e.g., NLTK)
 - Pipelines have default algorithms are run in series upon input text (e.g., Stanza, spaCy)
Aequian, Aghwan, **Akkadian**, Alanic, **Ancient Greek**, Ancient Hebrew, Ancient Ligurian, Ancient Macedonian, Ancient North Arabian, Ancient Zapotec, Andalusian Arabic, Anglo-Norman, Aquitanian, Ardhamāgadhī Prākrit, Armazic, Avestan, Bactrian, Bengali, Bolivian, Burma Pyu, Camunic, Carian, Celtiberian, **Church Slavic**, Cisalpine Gaulish, Classical Armenian, Classical Mandaic, Classical Mongolian, Classical Nahuatl, Classical Newari, Classical Quechua, Classical Syriac, Classical Tibetan, Coptic, Cumbric, Cuneiform Luwian, Curonian, Dacian, Early Irish, Early Tripuri, **Eastern Panjabi**, Ebbaite, Edomite, Egyptian (Ancient), Elamite, Elymian, Epi-Olmec, Epigraphic Mayan, Eteocretan, Eteocypriot, Etruscan, Faliscan, Galatian, Galindian, Geez, Gothic, Gujarati, Gāndhārī, Hadrami, Harappan, Hattic, Hercunic, Hiberno-Scottish Gaelic, Hieroglyphic Luwian, Hindi, Hititite, Hunnic, Hurrian, Iberian, Illyrian, Italic, Javanese, Karakhanid, Kaskean, Kawi, Khazar, Khorezmian, Khotanese, Khotanese, Kiton, Koguryo, Langobardic, Latin, Lemnian, Lepontic, Liburnian, Linear A, **Literary Chinese**, Lusitianian, Lycian, Lydian, Maek, Maharastri Prakrit, Malayalam, Manichaean Middle Persian, Marrucinian, Martian, Median, Meroitic, Messapic, Middle Armenian, Middle Breton, Middle Chinese, Middle Cornish, Middle Dutch, **Middle English**, Middle French, Middle High German, Middle Hittite, Middle Irish (10-12th century), Middle Korean (10th-16th cent.), Middle Low German, Middle Mongol, Middle Newar, Middle Welsh, Milyan, Minaean, Minoan, Moabite, Mozarabic, Mycenaean Greek, Mysian, Nadruvian, Neo-Hittite, Noric, North Picene, Numidian, Odia, **Official Aramaic (700-300 BCE)**, Old Aramaic (up to 700 BCE), Old Avar, Old Breton, Old Burmese, Old Chinese, Old Cornish, Old Dutch-Old Frankish, Old English (ca. 450-1100), Old Frankish, Old French (842-ca. 1400), Old Frisian, Old Georgian, Old High German (ca. 750-1050), Old Hittite, Old Hungarian, Old Japanese, Old Korean (3rd-9th cent.), Old Lithuanian, Old Manipuri, Old Marathi, Old Mon, Old Norse, Old Nubian, Old Ossetian, Old Persian (ca. 600-400 B.C.), Old Provençal, Old Russian, Old Saxon, Old Spanish, Old Tamil, Old Tibetan, Old Turkic, Old Turkish, Old-Middle Welsh, Oscar, Ottoman Turkish (1500-1928), Paekche, Paelignian, Pahlavi, Palaic, Palestinian Jewish Aramaic, Pali, Parthian, Pecheneg, Phoenician, Phrygian, Pictish, Pisdian, Primitive Irish, Punic, Puyo, Puyo-Paekche, Qatabanian, Raetic, Sabaic, Sabine, Sanskrit, Sauraseni Prakrit, Scythian, Sicana, Sicula, Sicullo Arabic, Sidetic, Skalvian, Sogdian, Sorothaptic, South Picene, **Standard Arabic**, Sumerian, Tangut, Tartessian, Telugu, Thracian, Tokharian A, Tokharian B, Transalpine Gaulish, Tumshuqese, Ugaritic, Umbrian, Urartian, Urdu, Vandalic, Venetic, Vestinian, Volscian, Western Farsi, Zhangzhung
2. System Design
An NLP pipeline within a framework architecture standardizes I/O while preserving algorithmic diversity. The CLTK should provide:

- **Modular processing pipelines**: Each language should come with a pre-configured pipeline set to defaults expected by most users.
- **Diversity of algorithms**: When there are several popular ways researchers perform a particular process.
- **Standard I/O**: an API should accept standard input for all human languages.
- **Model management**: The project must provide models for every pipeline.
Multilingual NLP Framework: An Analogy
3. CLTK Architecture
Processes

- NormalizeProcess
- TokenizationProcess
- SentenceProcess
- StopsProcess
- LemmatizationProcess
- MorphologyProcess
- PhonologyProcess
- StemmingProcess

- WordNetProcess
- LexiconProcess
- NERProcess
- DependencyProcess
- ProsodyProcess
- EmbeddingsProcess
- StanzaProcess
For most users, this is the only import required
from cltk import NLP

Load the default Pipeline for Latin
cltk_nlp = NLP(language="lat")

CLTK version '1.0.16'.

cltk_doc = cltk_nlp.analyze(text=livy)
print(cltk_doc.tokens[:20])
['Iam', 'primum', 'omnia', 'satis', 'constat', 'Troia', 'capta', 'in', 'ceteros', 'saevitum', 'esse', 'Troianos', 'duobus', 'Aeneae', 'Antenorique', 'et', 'vetusti']

print(cltk_doc.lemmata[:20])
['Iam', 'primus', 'omnis', 'satis', 'consto', 'mroia', 'capio', 'in', 'ceterus', 'saevio', 'sum', 'mroianus', 'duo', 'menea', 'mntenorique', 'et', 'vetus']

print(cltk_doc.pos[:20])
['ADV', 'ADJ', 'PRON', 'ADV', 'VERB', 'NOUN', 'VERB', 'ADP', 'PRON', 'VERB', 'AUX', 'NOUN', 'PUNCT', 'NUM', 'PUNCT', 'NOUN', 'ADV', 'PUNCT', 'CCONJ', 'ADJ']

print(cltk_doc.sentences_tokens[:1])
Looking at one Word, 'concurrunt' ('they run together')

```python
a_word_concurrunt = sentence_6[40]
print(a_word_concurrunt)
```

Word(index_char_start=None, index_char_stop=None, index_token=40, index_sentence=6, string='concurrunt', pos=verb, lemma='concurro', stem=None, scansion=None, xpos='L3|modA|tem1|gen9', under_pos='VERB', dependency_relation='acl:relcl', governor=33, features={Mood: [indicative], Number: [plural], Person: [third], Tense: [present], VerbForm: [finite], Voice: [active]}, category={F: [neg], N: [neg], V: [pos]}, stop=False, named_entity=False, syllables=None, phonetic_transcription=None, definition='con-currō currī or cucurrī, cursus, ere, to run together, assemble, flock together: concurrunt librarii: licet concurrant omnes philosophi, unite: trepidae comites, V.: summā cum expectatione concurruntur: undique ex agris, N.: mi obviam, T.: ad hos, Cs.: ad mortem: ad Perdiccam opprimendum, unite, N.: ad vocem, V.: in arcem, V.: concurritur undique ad incendium restinguendum: ex proximis castellis eo concursum est, Cs. — To meet, da sh together, clash, strike one another: ne prorae concurrerent, L.: concurrit dextera laevae, H.: aspere concurrunt litterae.—To come together in fight, engage in combat, join battle, fig ht: equites inter se, Cs.: inter se in modum iustae pugnae, L.: inter sese paribus telis, V.: cum hoc, N.: centurio cum centurione concurrendum sibi esse sciebat, L.: adversus fessos, L.: in aliquem, S.: audet viris concurretre virgo, V.: comminus hosti, O.: cum infestis signis, S.: ex insidiis, attacks, L.: mihi soli, V.: utrimque magno clamore, S.: concurrurur, the fig ht begins, H.: concurrentis bellis minae, of the outbreak of war, Ta.—To make haste, run for h elp: ad Aquillium.—Fig., to meet, concur, coincide, conspire, happen: multa concurrunt simul, T.: saepe concurrunt aliquorum inter ipsos contentiones.')
print("Mood:", a_word_concurrent.features["Mood"]) # type: List[Mood]
print("Number:", a_word_concurrent.features["Number"]) # type: List[Number]
print("Person:", a_word_concurrent.features["Person"]) # type: List[Person]
print("Tense:", a_word_concurrent.features["Tense"]) # type: List[Tense]
print("VerbForm:", a_word_concurrent.features["VerbForm"]) # type: List[VerbForm]
print("Voice:", a_word_concurrent.features["Voice"]) # type: List[Voice]

Mood: [indicative]
Number: [plural]
Person: [third]
Tense: [present]
VerbForm: [finite]
Voice: [active]
Modeling Syntax with DependencyTree

```
a_tree.print_tree()

root | egressi_1/verb
    | advmod | Ibi_0/adverb
    | nsubj:pass | Troiani_2/noun
    | acl:relcl | supereset_15/verb
    | punct | ,_3/punctuation
    | mark | ut_4/subordinating_conjunction
    | obl | quibus_5/pronoun
    | obl:arg | immenso_7/adjective
    | case | ab_6/adposition
    | obl | errore_9/noun
    | case | prope_8/adposition
    | nsubj | nihil_10/pronoun
    | obl | arma_12/noun
    | case | praeter_11/adposition
    | conj | naues_14/noun
    | cc | et_13/coordinating_conjunction
    | advcl | agerent_21/verb
    | punct | ,_16/punctuation
    | mark | cum_17/subordinating_conjunction
    | obj | praedam_18/noun
    | obl | agris_20/noun
    | case | ex_19/adposition
    | punct | ,_22/punctuation

    | conj | rex_24/noun
    | amod | Latinus_23/adjective
    | orphan | Aboriginesque_25/noun
    | acl:relcl | tenebant_29/verb
```
• Akkadian
• Ancient Greek
• Church Slavic
• Coptic
• Eastern Panjabi
• Gothic
• Hindi
• Latin
• Literary Chinese
• Middle English

• Middle French
• Middle High German
• Official Aramaic (700-300 BCE)
• Old English (ca. 450-1100)
• Old French (842-ca. 1400)
• Old Norse
• Pali
• Sanskrit
• Standard Arabic
People

Maintainers

- Kyle P. Johnson
- Patrick J. Burns
- John Stewart
- Todd G. Cook
- Clément Besnier
- William J. B. Mattingly

Academic Advisors

- Neil Coffee, University at Buffalo
- Gregory Crane, Tufts University
- Peter Meineck, New York University
- Leonard Muellner, Brandeis University

Also 90+ contributors over the past 6 years.
Ongoing Work

- To create evaluation benchmarks for each NLP task, for each language
- To make a TrainingPipeline, similar to the inference Pipeline, that would standardize the training of new models
- To develop Internet infrastructure for training and hosting models

- Home: http://cltk.org/
- Code: https://github.com/cltk/cltk
- Docs: https://docs.cltk.org/